e-ISSN: 2721-9380 Jurnal Elektronika dan Teknologi Informasi

Sistem Informasi Geografis Pemetaan Lahan Pertanian Produktif di Kabupaten Bireuen

Mutasar^{1*}, Chaeroen Niesa², Muhammad Husni³

^{1,2,3} Prodi Teknik Informatika, Universitas Islam Kebangsaan indonesia, Aceh

*Coresponding Email: mutasarstmik@gmail.com

ABSTRAK

Penelitian ini bertujuan untuk merancang dan membangun sistem informasi pemetaan lahan pertanian produktif di Kabupaten Bireuen berbasis Web GIS. Sistem ini dikembangkan sebagai solusi untuk mempermudah akses informasi spasial mengenai distribusi dan potensi lahan pertanian, sehingga dapat mendukung pengambilan keputusan oleh pemerintah daerah dan pemangku kepentingan lainnya. Metode pengembangan sistem menggunakan pendekatan waterfall, dengan tahapan analisis kebutuhan, perancangan sistem, implementasi, dan pengujian. Data spasial diperoleh dari instansi terkait dan diolah menggunakan teknologi GIS berbasis web, yang memungkinkan visualisasi peta interaktif dan informasi atribut lahan secara real-time. Hasil penelitian menunjukkan bahwa sistem yang dibangun mampu menyajikan informasi lahan secara akurat dan mudah diakses, serta memberikan kontribusi terhadap efisiensi pengelolaan sumber daya pertanian di wilayah Bireuen. Dengan adanya sistem ini, diharapkan proses perencanaan dan monitoring lahan pertanian produktif dapat dilakukan secara lebih efektif dan transparan.

Kata Kunci: Sistem Informasi, Web GIS, Lahan Pertanian, Kabupaten Bireuen, Pemetaan Spasial.

ABSTRACT

This research aims to design and develop a Web-GIS-based information system for mapping productive agricultural land in Bireuen Regency. The system is developed as a solution to facilitate access to spatial information regarding the distribution and potential of agricultural land, thereby supporting decision-making processes for local governments and other stakeholders. The system development follows the waterfall approach, consisting of requirement analysis, system design, implementation, and testing. Spatial data were obtained from relevant agencies and processed using web-based GIS technologies, enabling interactive map visualization and real-time access to land attribute information. The results show that the system is capable of presenting land information accurately and accessibly, contributing to more efficient management of agricultural resources in the Bireuen region. With this system, the planning and monitoring of productive agricultural land can be carried out more effectively and transparently.

Keywords: Information System, Web GIS, Agricultural Land, Bireuen Regency, Spatial Mapping.

I. PENDAHULUAN

Kabupaten Bireuen merupakan salah satu daerah di Provinsi Aceh yang terletak di sepanjang pesisir Selat Malaka. Secara geografis, wilayah ini memiliki bentang alam hijau yang luas, meliputi kawasan hutan, persawahan, serta lahan perkebunan. Dominasi areal persawahan dan perkebunan menjadikan Bireuen sebagai salah satu wilayah dengan potensi pertanian yang sangat kuat. Bahkan, daerah ini dikenal sebagai salah satu sentra penghasil beras penting di Aceh, sehingga sektor pertanian memiliki kontribusi signifikan terhadap struktur ekonomi regional. Secara umum, Bireuen dikategorikan sebagai wilayah tingkat II yang cukup potensial, dengan tingkat pendapatan per kapita mencapai lebih dari Rp 1,4 juta tanpa sektor migas atau sekitar Rp 6 juta apabila sektor migas turut diperhitungkan.

Mutasar, dkk. Page | 38

Prodi Teknik Informatika Universitas Islam Kebangsaan Indonesia Email: muatasarstmik@gmail.com

JETT e-ISSN: 2721-9380

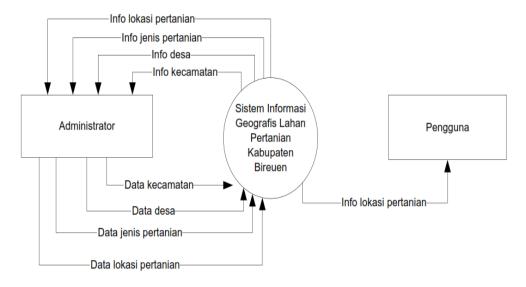
Besarnya potensi pertanian tersebut menuntut adanya suatu sistem informasi yang mampu menyajikan data spasial secara akurat dan terintegrasi, terutama terkait persebaran lahan pertanian tanaman pangan dan lokasi peternakan. Pemetaan spasial menjadi kebutuhan strategis karena dapat memberikan gambaran komprehensif mengenai distribusi sentra persawahan, area perkebunan, serta titik-titik peternakan yang tersebar di berbagai kecamatan. Informasi semacam ini sangat penting dalam menunjang proses monitoring, pengelolaan sumber daya, pengambilan keputusan, serta penyaluran bantuan pemerintah secara tepat sasaran dalam rangka mempercepat pembangunan sektor pertanian dan peternakan.

Namun, hingga saat ini pemetaan data pertanian di banyak daerah masih dilakukan secara manual dan tidak terintegrasi dalam satu wadah digital yang dapat diakses secara mudah. Kondisi tersebut menyebabkan informasi spasial sulit diperbarui, kurang efisien untuk dianalisis, serta tidak mampu menjawab kebutuhan pengelolaan pertanian modern yang menuntut akurasi dan kecepatan data. Oleh karena itu, diperlukan solusi berbasis teknologi yang dapat mengintegrasikan data spasial dan nonspasial dalam satu platform yang bersifat interaktif dan informatif.

Bersdasarkan dari kebutuhan tersebut, penelitian ini dilakukan untuk merancang dan membangun Sistem Informasi Pemetaan Lahan Pertanian Produktif Kabupaten Bireuen berbasis Web GIS. Sistem ini dikembangkan menggunakan Google Maps API sebagai platform pemetaan, bahasa pemrograman PHP sebagai komponen pengolah data, serta MySQL sebagai basis data utama. Pengembangan sistem dilakukan melalui tahapan studi pustaka, pengumpulan data dari instansi terkait, analisis kebutuhan, perancangan basis data dan antarmuka, implementasi aplikasi, serta pengujian sistem untuk memastikan fungsionalitasnya berjalan dengan baik.

Dengan terbangunnya sistem informasi ini, diharapkan Dinas Pertanian Kabupaten Bireuen maupun pemangku kepentingan lainnya dapat melakukan pemantauan terhadap persebaran lahan pertanian dan lokasi peternakan secara lebih efektif. Sistem ini juga berpotensi menjadi dasar pengembangan kebijakan, referensi penyaluran program bantuan, serta sumber informasi penting dalam mendukung pengelolaan lahan secara lebih berkelanjutan. Selain itu, keberadaan platform Web GIS ini diharapkan dapat meningkatkan transparansi dan aksesibilitas informasi spasial bagi masyarakat dan instansi terkait, sehingga mendorong optimalisasi pengelolaan sumber daya pertanian di Kabupaten Bireuen.

II. METODE PENELITIAN


Penelitian ini menggunakan pendekatan deskriptif dan rekayasa perangkat lunak dengan tujuan merancang serta membangun Sistem Informasi Geografis (SIG) berbasis Web GIS untuk pemetaan lahan pertanian produktif di Kabupaten Bireuen. Metode pengembangan sistem mengacu pada model waterfall, yang meliputi tahapan analisis kebutuhan, perancangan sistem, implementasi, dan pengujian. Pemilihan model waterfall didasarkan pada karakteristik pengembangan yang membutuhkan perencanaan terstruktur dan alur pengerjaan bertahap, sehingga setiap fase dapat diselesaikan secara sistematis sebelum melanjutkan ke tahap berikutnya.

Tahap pertama adalah analisis kebutuhan, yang dilakukan untuk mengidentifikasi kebutuhan fungsional dan nonfungsional sistem. Analisis fungsional mencakup kemampuan sistem dalam mengelola data kecamatan, data desa, jenis lahan pertanian, serta titik lokasi lahan dengan koordinat geografis. Pada tahap ini juga dilakukan analisis kebutuhan informasi terkait struktur administrasi wilayah Bireuen dan klasifikasi jenis-jenis pertanian yang akan ditampilkan pada sistem. Sedangkan analisis nonfungsional mencakup persyaratan perangkat keras dan perangkat lunak yang digunakan dalam pengembangan sistem, termasuk penggunaan server lokal berbasis XAMPP, bahasa pemrograman PHP, basis data MySQL, serta integrasi API Google Maps untuk menampilkan informasi spasial secara interaktif.

Tahap berikutnya adalah perancangan sistem, yang dilakukan untuk menggambarkan alur proses, struktur basis data, dan rancangan antarmuka aplikasi. Perancangan proses diformulasikan melalui penyusunan diagram konteks dan Data Flow Diagram (DFD) pada beberapa level, yang menjelaskan aliran informasi antara pengguna, sistem, serta komponen internal aplikasi. Selain itu, perancangan basis data dilakukan menggunakan Entity Relationship Diagram (ERD) yang memodelkan hubungan antar entitas seperti kecamatan, desa, jenis pertanian, dan lokasi lahan. Desain tabel kemudian dibangun berdasarkan struktur ERD, dengan penentuan atribut utama, primary key, serta foreign key untuk menjaga integritas data dalam sistem.

Vol. 6, No. 2, September 2025

Pada tahap implementasi, rancangan sistem yang telah disusun diterjemahkan ke dalam bentuk aplikasi web menggunakan teknologi HTML, CSS, JavaScript, dan PHP. API Google Maps digunakan untuk menampilkan peta digital, menambahkan marker lokasi, serta menggambar polygon batas lahan sesuai koordinat yang dimasukkan oleh admin. Semua data yang diinput tersimpan dalam database MySQL yang terintegrasi langsung dengan antarmuka peta, sehingga setiap perubahan data dapat ditampilkan secara realtime. Implementasi antarmuka pengguna dilakukan dengan merancang halaman login admin, halaman pengelolaan data, serta halaman utama pengguna yang memvisualisasikan peta dan atribut lahan pertanian.

Gambar 1. Rancangan Context Diagram Sistem

Keterangan alur aktivitas pada konteks diagram menggambarkan interaksi antara pengguna dan sistem secara menyeluruh. Administrator memiliki peran utama dalam memasukkan seluruh data yang dibutuhkan sistem, dimulai dari penginputan data kecamatan yang kemudian diolah dan ditampilkan kembali oleh sistem sebagai informasi wilayah kecamatan. Administrator juga menginputkan data desa pada setiap kecamatan, dan sistem akan menghasilkan informasi desa yang terstruktur sesuai wilayah administrasinya. Selanjutnya, administrator memasukkan data jenis-jenis pertanian yang terdapat di Kabupaten Bireuen, yang kemudian disajikan sistem sebagai informasi kategori pertanian. Administrator juga bertanggung jawab menginputkan data lokasi lahan pertanian beserta koordinatnya, dan sistem akan menampilkan informasi lokasi tersebut beserta jenis pertaniannya. Sementara itu, pengguna umum yang mengakses sistem dapat memperoleh informasi mengenai lokasi-lokasi pertanian secara langsung melalui antarmuka peta yang telah disediakan, sehingga memberikan kemudahan dalam melihat sebaran lahan pertanian di wilayah Bireuen.

Tahap terakhir adalah pengujian sistem, yang dilakukan menggunakan metode black box testing untuk memastikan seluruh fitur berjalan sesuai kebutuhan. Pengujian meliputi pemeriksaan fungsi input data, proses penyimpanan, pengambilan informasi dari basis data, serta validasi tampilannya pada peta interaktif. Fokus utama pengujian adalah memastikan bahwa setiap data spasial yang diinput—baik berupa titik koordinat maupun polygon batas lahan—dapat divisualisasikan secara tepat dan bahwa sistem mampu memberikan keluaran berupa informasi lahan pertanian secara akurat, responsif, dan mudah diakses oleh pengguna.

Metode penelitian yang diterapkan memungkinkan pengembangan sistem informasi geografis yang terstruktur dan dapat diandalkan. Proses yang dimulai dari analisis hingga pengujian memberikan landasan kuat untuk menghasilkan aplikasi Web GIS yang berfungsi sebagai alat bantu dalam mendukung pengelolaan dan pengambilan keputusan terkait lahan pertanian produktif di Kabupaten Bireuen.

JETT e-ISSN: 2721-9380

III. HASIL DAN PEMBAHASAN

3.1 Desain Tabel

Perancangan basis data pada aplikasi web ini menggunakan MySQL dengan membangun sebuah database bernama db_gispertanian. Struktur database dirancang untuk mendukung proses pengelolaan informasi wilayah dan lokasi pertanian di Kabupaten Bireuen. Secara keseluruhan, database terdiri atas lima tabel utama, yaitu tabel Admin, Kecamatan, Desa, Jenis Pertanian, dan Lokasi.

a. Tabel Admin

Tabel admin digunakan untuk menyimpan data admin yang dilakukan ketika mengakses sistem. Adapun rancangannya seperti pada Tabel 1 berikut :

Tabel 1. Rancangan Tabel Admin

No	Nama Field	Type Field	Panjang	Keterangan / Key
1	username	Varchar	20	Nama pengguna / Primary Key
2	password	Varchar	20	Password pengguna
3	nama	Varchar	30	Nama pengguna

b. Tabel Kecamatan

Tabel kecamatan digunakan untuk menyimpan data kecamatan. Adapun rancangannya seperti pada Tabel 2 berikut :

Tabel 2. Rancangan Tabel Data Kecamatan

No	Nama Field	Type Field	Panjang	Keterangan / Key
1	id_kecamatan	Int	2	Kode kecamatan / Primary Key
_2	kecamatan	Varchar	30	Nama kecamatan

c. Tabel Desa

Tabel Desa digunakan untuk menyimpan data desa. Adapun rancangannya seperti pada Tabel 3 berikut:

Tabel 3. Tabel Data Desa

No	Nama Field	Type Field	Panjang	Keterangan / Key
1	id_desa	Int	3	Kode desa / Primary Key
2	desa	Varchar	30	Nama desa
3	id_kecamatan	Int	2	Kode kecamatan

d. Tabel Jenis Pertanian

Tabel Jenis Pertanian digunakan untuk menginputkan data jenis pertanian . Adapun rancangannya seperti pada Tabel 4 berikut :

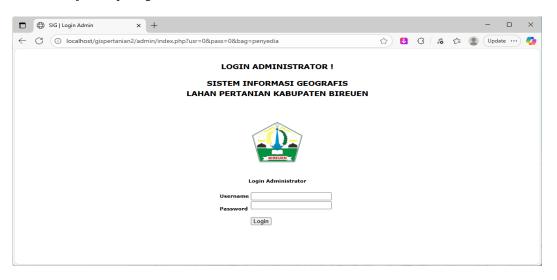
Tabel 4. Tabel Jenis Pertanian

No	Nama Field	Type Field	Panjang	Keterangan / Key
1	id_jenis	int	3	ID Pertanian / Primary Key
2	jenis	Varchar	50	Jenis Pertanian
3	deskripsi	Text	-	Deskripsi umum

e. Tabel Lokasi

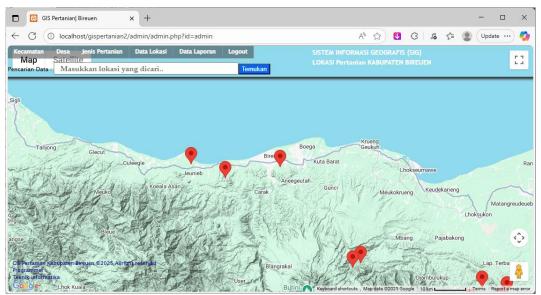
Tabel lokasi pertanian digunakan untuk menyimpan nama-nama lokasi pertanian. Adapun rancangan tabelnya dapat dilihat pada Tabel 5 berikut :

Tabel 5. Tabel Lokasi Pertanian

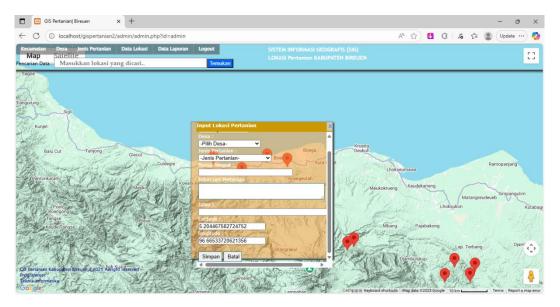

No	Nama Field	Type Field	Panjang	Keterangan / Key
1	id_lokasi	Int	10	ID Lokasi / Primary Key
2	id_desa	Int	3	ID desa / Foreign Key
3	id_jenis	Int	3	ID jenis Pertanian / Foreign Key
4	nama_tempat	Varchar	50	Nama tempat
5	informasi_umum	Text	-	Informasi lokasi
6	jalan	Varchar	50	Alamat jalan
7	lat	Double	-	Koordinat latitude
8	lng	Double	-	Koordinat longitudinal

Vol. 6, No. 2, September 2025

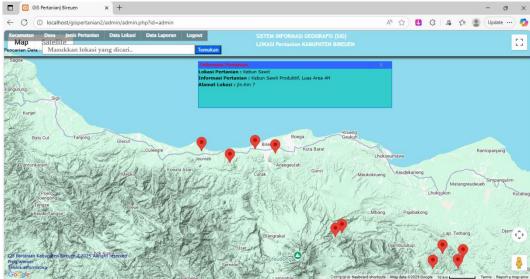
JETI e-ISSN: 2721-9380


3.2 Interface

Interface atau hasil output dari perancangan aplikasi web merupakan antarmuka yang digunakan pengguna untuk berinteraksi dengan sistem, yang seluruhnya diakses melalui browser. Halaman Login Admin berfungsi sebagai akses awal bagi administrator dalam mengelola data. Pada halaman ini, admin diwajibkan memasukkan username dan password yang sesuai dengan data pada database. Jika informasi yang dimasukkan benar, sistem akan memberikan hak akses untuk masuk ke halaman utama. Tampilan halaman login admin ditunjukkan pada gambar 2.


Gambar 2. Form Login Admin

Halaman utama administrator merupakan halaman utama pada bagian admin untuk melakukan semua kegiatan dalam sistem. Pada halaman utama terdapat panel menu yang berisi menu data kecamatan,desa, jenis, data laporan dan logout. Pada bagian tengah adalah panel utama yang digunakan untuk menampilkan peta dari googlemaps API. Tampilannya seperti pada Gambar 3.


Gambar 3. Halaman Utama Administrator

Halaman input data Lokasi digunakan untuk menginputkan Lokasi lahan pertanian di dalam web gis. Untuk menginputkan data Lokasi caranya klik pada peta maka akan muncul form input Lokasi dan inputkan datanya. Tampilannya seperti pada Gambar 4.

Gambar 4. Halaman Data Input Lokasi

Form hasil ini akan menampilkan informasi Lokasi pertanian pada marker peta google maps API yang dapat di klik pada marker dan akan di tampilkan informasi. Tampilannya seperti pada Gambar 5.

Gambar 5. Form Hasil Pemetaan Lokasi

JETT e-ISSN: 2721-9380

4. SIMPULAN

Berdasarkan hasil perancangan dan implementasi sistem informasi pemetaan lahan pertanian produktif, dapat disimpulkan bahwa sistem yang dibangun telah mampu mendukung proses pengelolaan dan visualisasi data pertanian di Kabupaten Bireuen. Sistem ini dapat menginput dan menyimpan data lahan pertanian ke dalam database serta menampilkannya secara langsung pada peta berbasis Web GIS. Selain itu, sistem mampu melakukan pemetaan lahan pertanian produktif di berbagai lokasi dalam wilayah Kabupaten Bireuen sehingga memudahkan proses identifikasi dan pemantauan. Sistem juga menyediakan fitur pencarian lokasi lahan produktif pada peta serta menghasilkan laporan yang relevan, sehingga dapat mendukung kebutuhan informasi bagi dinas pertanian maupun pihak terkait lainnya.

DAFTAR PUSTAKA

- [1] Sari, B. P. (2024). Sistem Pengelompokkan Produktivitas Pada Tanaman Padi Menggunakan Metode Fuzzy C-Means Clustering Di Kabupaten Bireuen (Doctoral dissertation, Universitas Malikussaleh).
- [2] Awalurramadhana, A., Ibrahim, A., & Furqani, H. (2024). Analisis Pemetaan Potensi Zakat di Provinsi Aceh Tahun 2023. EKOBIS SYARIAH, 8(2), 9-32.
- [3] Hamzani, Z. (2024). Analisis Spasial Perubahan Lahan Pertanian Ke Non Pertanian Tahun 2012-2023 Di Kabupaten Tegal (Doctoral dissertation, Universitas Muhammadiyah Surakarta).
- [4] Hasdyna, N., Dinata, R. K., & Yafis, B. (2025). Optimizing K-Means Algorithm Using the Purity Method for Clustering Oil Palm Producing Regions. JISKA (Jurnal Informatika Sunan Kalijaga), 10(1), 1-15.
- [5] SAPUTRI, Y. A. (2025). DAMPAK ALIH FUNGSI LAHAN PERTANIAN MENJADI NON PERTANIAN DI KECAMATAN KARAWANG BARAT KABUPATEN KARAWANG (Doctoral dissertation, Sekolah Tinggi Pertanahan Nasional).
- [6] Nugroho, J. S., Indrasto, H. B. B., Salsabila, F., & Kartika, A. P. (2025). Penguatan Ketahanan Masyarakat Desa Pagerjurang terhadap Perubahan Iklim melalui Mitigasi Kekeringan dan Longsor Berbasis Partisipatif. IKRA-ITH ABDIMAS, 9(2), 371-380.
- [7] Berliana, M., Wardani, D. K., Rahmaningtyas, A., Salqaura, S. S., Fauziah, I., Tarigan, R. A., ... & Safitri, S. A. (2025). Pengantar Ilmu Pertanian: Konsep, Praktik, dan Perkembangan Terkini. Penerbit Mifandi Mandiri Digital, 1(02).
- [8] MARKUS, F. (2025). Pemerintah Desa dalam Pengelolaan Air Bersih (Penelitian di Desa Setungkup Kalimantan Barat) (Doctoral dissertation, Sekolah Tinggi Pembangunan Masyarakat Desa STPMD" APMD").
- [9] Muklir, S., & SH, M. (2025). PENGAWASAN PEMILIHAN SERENTAK: Dinamika Pilkada Aceh 2024 dalam Konteks Nasional. PENERBIT KBM INDONESIA.
- [10] Dinata, R. K., Hasdyna, N., Retno, S., & Nurfahmi, M. (2021). K-means algorithm for clustering system of plant seeds specialization areas in east Aceh. ILKOM Jurnal Ilmiah, 13(3), 235-243.
- [11] Putra, M. F. P., & Nurpulaela, L. (2024). Mengoptimalkan Penerangan Otomatis Dengan Lampu Sensor Inframerah Berbasis Arduino R3. Jurnal Mekanova: Mekanikal, Inovasi dan Teknologi, 10(1), 109-121.
- [12] Hasdyna, N., & Dinata, R. K. (2024). Komunikasi Data Dan Jaringan; Konsep, teknologi dan penerapannya dalam sistem modern. Serasi Media Teknologi.
- [13] Hasdyna, N., & Dinata, R. K. (2025). Pengantar Teknologi Informasi: Konsep Digital dan Inovasi Berbasis Challenge Based Learning (CBL) dan Project Based Learning (PJBL). Serasi Media Teknologi.
- [14] HASDYNA, N., & DINATA, R. K. (2025). A Hybrid Optimization of Supervised Learning Models using Information Gain-Based Feature Selection.
- [15] Dinata, R. K., & Hasdyna, N. (2025). SUPERVISED LEARNING: Strategi Prediksi dan Klasifikasi Data. Serasi Media Teknologi.
- [16] Dinata, R. K., & Hasdyna, N. (2025). Algoritma dan Pemrograman: Konsep Dasar, Logika, dan Implementasi dengan C++ & Python. Serasi Media Teknologi.
- [17] Dinata, R. K., Retno, S., & Hasdyna, N. (2021). Minimization of the Number of Iterations in K-Medoids Clustering with Purity Algorithm. Rev. d'Intelligence Artif., 35(3), 193-199.
- [18] Dinata, R. K., Hasdyna, N., & Alif, M. (2021). Applied of Information Gain Algorithm for Culinary Recommendation System in Lhokseumawe. Journal Of Informatics And Telecommunication Engineering, 5(1), 45-52
- [19] Retno, S., Dinata, R. K., & Hasdyna, N. (2023). Evaluasi model data chatbot dalam natural language processing menggunakan k-nearest neighbor. Jurnal CoSciTech (Computer Science and Information Technology), 4(1), 146-153.
- [20] Dinata, R. K., Adek, R. T., Hasdyna, N., & Retno, S. (2023, August). K-nearest neighbor classifier optimization using purity. In AIP Conference Proceedings (Vol. 2431, No. 1, p. 080013). AIP Publishing LLC.

- Vol. 6, No. 2, September 2025
- [21] Hasdyna, N., Dinata, R. K., & Retno, S. (2023). Analysis of the Topsis in the Recommendation System of PPA Scholarship Recipients at Universitas Islam Kebangsaan Indonesia. Jurnal Transformatika, 21(1), 28-37.
- [22] Hasdyna, N., Dinata, R. K., Rahmi, & Fajri, T. I. (2024, November). Hybrid Machine Learning for Stunting Prevalence: A Novel Comprehensive Approach to Its Classification, Prediction, and Clustering Optimization in Aceh, Indonesia. In Informatics (Vol. 11, No. 4, p. 89). MDPI.
- [23] Syaiful, S., Aminda, R. S., Aminda, A., & Sandy, A. M. (2025). Zonasi Tingkat Kerawanan Banjir dengan Sistem Informasi Geografis Pada DAS Sekitar Perumahan Bumi Kartika Dramaga, Bogor. Jurnal Pengabdian Masyarakat UIKA Jaya SINKRON, 3(1), 1-13.
- [24] Abdurrahman, A. R., Rizki, M. B., Pradana, R. B., & Fitri, A. S. (2025). Perancangan sistem informasi geografis wilayah rawan pembegalan menggunakan metode aaod. JATI (Jurnal Mahasiswa Teknik Informatika), 9(1), 1643-
- [25] Hasanah, D. N., Ikhwan, A., & Santoso, H. (2025). SISTEM INFORMASI GEOGRAFIS POHON KELAPA SAWIT PADA PERKEBUNAN SEI RUMBIA. Jurnal Sistem Informasi Bisnis (JUNSIBI), 6(1), 43-52.
- [26] Hasdyna, N., Dinata, R. K., & Retno, S. (2023). A Web-Based Decision Support System Implementation for Evaluating Premier Smartphone Brands Using Weighted Product Method. SMATIKA JURNAL, 13(02), 329-338.
- [27] Hasdyna, N., & Dinata, R. K. (2024). Comparative analysis of k-medoids and purity k-medoids methods for identifying accident-prone areas in North Aceh Regency. Scientific Journal of Informatics, 11(2), 263-272.
- [28] Hasdyna, N., Dinata, R. K., Retno, S., Fajri, T. I., & Mutasar, M. (2024). Sosialisasi peningkatan pengelolaan dan efisiensi sistem informasi perpustakaan kitab di Dayah Darul Ulum Desa Alue Awe Kota Lhokseumawe. Jurnal Pengabdian kepada Masyarakat Nusantara, 5(2), 2003-2008.
- [29] Dinata, R. K., Bustami, B., Retno, S., & Daulay, A. P. B. (2022). Clustering the Spread of ISPA Disease Using the Fuzzy C-Means Algorithm in Aceh Utara. International Journal of Information System and Innovative Technology,
- [30] Dinata, R. K., & Retno, S. (2024). Optimizing the Evaluation of K-means Clustering Using the Weight Product. Revue d'Intelligence Artificielle, 38(4).
- [31] Fajri, I. T. I., Sari, H. L., Kom, S., Kom, M., Dinata, R. K., Hasdyna, N., ... & Fadhilah, C. (2024). Data Mining. Serasi Media Teknologi.
- [32] Mutasar, M., Hasdyna, N., Yustizar, Y., Muttaqin, M., & Dinata, R. K. (2024). Pelatihan dasar jaringan komputer bagi pemula: Membangun keterampilan teknologi dari teori ke praktik di Kota Langsa. Jurnal Pengabdian kepada Masyarakat Nusantara, 5(4), 4689-4695.
- [33] Alvanof, M., & Dinata, R. K. (2024). Penerapan Algoritma Random Forest dalam Deteksi dan Klasifikasi Ransomware. Jurnal Elektronika dan Teknologi Informasi, 5(2), 23-31.
- [34] Dinata, R. K., Bustami, B., Razi, A., & Arasyi, M. (2022). Algoritma Dijkstra dan Bellman-Ford dalam Sistem Pemetaan Barbershop di Kota Lhokseumawe. INFORMAL: Informatics Journal, 7(2), 128-137.
- [35] Lubis, A. A. M. A., Dinata, R. K., & Aidilof, H. A. K. (2024). Classification of Heart Disease Using Modified K-Nearest Neighbor (MKNN) Method. Journal of Advanced Computer Knowledge and Algorithms, 1(2), 31-37.
- [36] Iqbal, M., Dinata, R. K., & Suwanda, R. (2025). Comparison of Linear Regression and Polynomial Regression for Predicting Rice Prices in Lhokseumawe City. Jurnal Sisfokom (Sistem Informasi dan Komputer), 14(3), 387-394.
- [37] Hanifa, A., Kom, S., Kom, M., Eka, M., Hasdyna, N., Dinata, R. K., & Usman, A. (2024). RPL (Rekayasa Perangkat Lunak). Serasi Media Teknologi.
- [38] Dinata, R. K., & Bustami, R. (2022). Analisis Chebyshev Distance pada Algoritma K-Nearest Neighbor dalam Sistem Klasifikasi Rumah Sakit. Jurnal Elektronika dan Teknologi Informasi, 3(2), 13-22.